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Appendix 2 
Derivation of the EMS (Expected Mean Square) relations 
 

 

For this derivation we use a matrix with n = 3 rows (subjects) and k = 2 columns 

(measurements) as an illustration:  

 

 

 

 

 

 

As in Table 2 (main text), S1, S2, and S3 are the mean values of the rows, M1 and M2 are the 

mean values of the columns and  is the total mean value. 

We will first assume Model 2, i.e. that each matrix element xij may be regarded as the sum 

of four terms, 

 

ijjiij vcrx           (A2-1) 

 

where µ is a constant, ri is sampled from a normal distribution with standard deviation r, cj is 

sampled from a normal distribution with standard deviation c and vij is sampled from a 

normal distribution with standard deviation v. Note that Model 1 is obtained simply by 

putting all cj = 0. 

Assuming that the model (A2-1) is used to generate the matrix xij shown above, we will 

now estimate the resulting mean squares, i.e. MSBS, MSBM, MSWS, MSWM and MSE.  

We observe that each matrix element xij is, apart from the constant µ, the sum of three 

terms, each of which is sampled from a normal distribution. The total variance of xij is 

therefore the sum of the three independent variances r 
2
, c 

2
 and v 

2
.  It follows that each 

term in (A2-1) will give its own, independent contribution to each of the above five mean 

squares, for example to MSBS. In order to estimate these contributions, the simplest procedure 

is to study one term in (A2-1) at a time, assuming the others to be zero. 

We may expect the constant µ to give zero contribution to variance and thus zero 

contribution to each mean square quantity (MS). This is easily verified. Putting each term in 

eq.(A2-1) except µ equal to zero, the matrix and its averages in will be reduced to the 

following: 

 

 

 

 

 

 

We use the formulas in Appendix 1, and get, for example,  
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    (A2-2) 

 

In a similar way we may easily confirm that MSBM = MSWS = MSWM = MSE = 0.  

x11 x12 S1 

x21 x22 S2 

x31 x32 S3 

M1 M2  

µ µ µ 

µ µ µ 

µ µ µ 

µ µ µ 
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We therefore move on to the next term, ri. Putting all other terms in (A2-1) equal to zero we 

get the following matrix:  

 

 

 

 

 

 

Here,  is the mean value of the three ri. Again using Appendix 1, we get 
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 (A2-3) 

 

where the "" sign means "is an estimate of". The last member in both equations follows 

when we realize that 
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is the square of the standard deviation of the three ri values about their mean value ; 

therefore, it is an estimate of the variance r 
2
. In fact, if this sampling of three ri values from 

a normal distribution with variance r 
2
 is repeated a large number of times, then eq.(A2-3) 

means for example that the average value of MSWM will tend to be equal to r 
2
. 

By similar procedures we may easily show that MSBM = MSWS = 0. From Appendix 1 we 

find the exact relation 
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Using (A2-3) in (A2-4), we find MSE  0. In summary, therefore, the ri term gives the 

contributions 
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We next put all terms in (A2-1) except the cj equal to zero. The resulting matrix is  

 

 

  r1   r1 r1 

  r2   r2 r2 

  r3   r3 r3 
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Here,  is the mean value of the three cj. We need not do all the above calculations again, but 

merely observe that rows and columns have changed roles. Thus, we will obtain the desired 

formulas simply by replacing k by n, r by c, MSBS by MSBM, MSBM  by MSBS, MSWS by 

MSWM and MSWM  by MSWS. For the MSE, we use again eq.(A2-5). We show MSWS 

explicitly: 
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where, again, the last member follows since we recognize the square of the standard deviation 

of the cj about their mean value in the next last member. The result, i.e. the contributions from 

the cj term, is therefore 
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Here we may insert the derivation in the case that the cj terms are fixed, i.e. Model 3.  The 

matrix looks precisely the same. However, in eq.(A2-6) we do not make the estimate (  c 
2 

) 

in the last member, but simply use the fact that 
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where the customary symbol c
2
 is defined. For Model 3 the contributions from the cj term are 

therefore 
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We now consider the last term in (A2-1), i.e. we put all terms equal to zero except vij.The 

resulting matrix is given by 

 

c1 c2  
c1 c2  
c1 c2  
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Here Ri and Cj denote the row and column mean values. We may here observe that each 

matrix element vij is obtained by sampling from a normal distribution with variance v 
2
. 

Moreover, each Ri value is the mean value of k = 2 matrix elements; its variance should 

therefore be v 
2
/k. In the same way, each Cj value is the mean value of n = 3 matrix elements; 

its variance should therefore be v 
2
/n. 

From this we get 
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The last member follows if we observe that the next last member, apart from the factor k, is 

the square of the standard deviation of the Ri values about their mean value , i.e. it is an 

estimate of their variance: 
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Proceeding in a similar manner to estimate MSBM, MSWM and MSWS, and using  (A2-5) to 

estimate MSE, we find the following simple result for the contributions from the vij term: 
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For Model 2 we now find the total expression for the mean squares as estimates of the 

variances by adding the contributions (A2-5), (A2-7) and (A2-12). This gives 
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The estimates for Model 1 are obtained from (A2-13) simply by putting  c
2
 = 0, and the 

estimates for Model 3 by replacing  c
2
 with  c

2
, as shown by (A2-9). 

v11 v12 R1 

v21 v22 R2 

v31 v32 R3 

C1 C2  


